LA IMPORTANCIA DEL MANEJO DEL AGUA DEPURADA EN EL ÉXITO DE LOS PROGRAMAS DE REUTILIZACIÓN: EJEMPLOS EN GRAN CANARIA:

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA

Palacios* Mendoza-Grimón*

Fernández** Fernandez-Vera***

Hernandez-Moreno****

ULL

Mª del Pino Palacios Díaz Prof . Titular ULPGC Doctor Ingeniero Agrónomo UPV Máster en Tecnología Ambiental ULPGC

LA IMPORTANCIA DEL MANEJO DEL AGUA DEPURADA EN EL ÉXITO DE LOS PROGRAMAS DE REUTILIZACIÓN: EJEMPLOS EN GRAN CANARIA

1. ASPECTOS SANITARIOS: LA DESINFECCION

- 1.1. La cadena epidemiologica: El agua como reservorio y mecanismo de transmisión
- 1.2. El riesgo de infección:

Contacto directo e indirecto → i

importancia del manejo del agua

2. EL MANEJO DEL AGUA Y SU EFECTO EN LAS CONSECUENCIAS DEL REUSO

- 2.1. Costes de producción y bombeo
- 2.2. Ventajas del reuso: empresario agrícola y sociedad
- 2.3. La influencia del manejo en la evolución de algunos parámetros agronómicos
 - ·Sodio, salinidad, Nitrógeno, Fósforo, Boro...

- Tratamiento terciario

LA DESINFECCIÓN

Con la desinfección se reduce la capacidad de los microorganismos de crecer y producir infecciones, mediante el uso de biocidas.

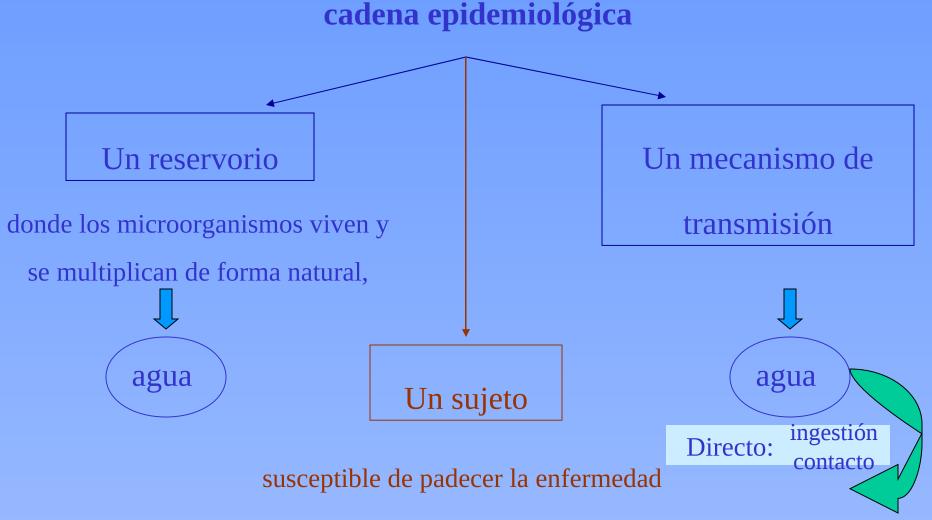
La desinfección **es siempre recomendable** cuando el agua depurada va a reutilizarse, no sólo por razones sanitarias, sino también, como medida para proteger los sistemas de transporte del agua y las instalaciones de riego.

Aspectos sanitarios

susceptible de padecer la enfermedad

<mark>c</mark>adena epidemi

Un reservorio


donde los microorganismos viven y se multiplican de forma natural,

Los patógenos son capaces de sobrevivir en nuestras condiciones

Fecha	Calidad agua	CF	SF	Salmonella	DBO_5
Oct 2001	AD	$7,20 \times 10^3$	1.0×10^3	Presencia	378,7
	Terciario	4	4 Ausencia		-
Dic 2001	Terciario	Ausencia	Ausencia	Ausencia	-
Enero 2002	AD	5.1×10^4	-	Presencia	10,7
	Terciario	Ausencia	Ausencia	Ausencia	20,6
Febrero 2002	AD	$3,6 \times 10^3$	Ausencia	Presencia	285
(principios)				()	
Febrero 2002 (finales)	AD	2,04 x 10 ⁴	1	Presencia	101,9
Marzo 2002	Secundario*	136	Ausencia	Ausencia	3,2
Abril 2002	AD	ND**	ND	Ausencia	3,0
	AD uv	ND	ND	Ausencia	3,0
ológica_	AR	14	ND	Ausencia	0,3
Junio 2002	AD	62	12	Ausencia	15,0
	AD uv	62	8	Ausencia	41,0
	AR	384	1	Ausencia	14,5
Agosto 2002	AD	ND	19	Ausencia	42,7
	AD uv	510	20	Ausencia	21,0
	AR	ND	ND	Ausencia	0,5
Sept 2002**	AD	$3,5 \times 10^3$	$1,2 \times 10^3$	Ausencia	1605
	AD uv	$4,9 \times 10^2$	$4,9 \times 10^{2}$	Presencia	125,5
	AR	146	2	Ausencia	8
Oct. 2002***	AD	ND	ND	Ausencia	8
	AD uv	100	2	Ausencia	7,7
	AR	8	1	ausencia	7,4
Dic 2003	AD	240	52	Ausencia	13
	AD uv	150	ND	Ausencia	4,8
	AR	50	ND	Ausencia	4,7
Enero 2003	AD	156	151	Ausencia	30,8
	AD uv	6	1	Ausencia	22,4
	AR	27	ND	Ausencia	1,2
Febrero 2003	AD	46	59	Ausencia	24,8
	AD uv	5	78	Ausencia	28,4
	AR	72	ND	Ausencia	7,4
Marzo 2003	AD	340	50	Ausencia	169,5
	AD uv	110	ND	Ausencia	2,4
	AR	370	62	Ausencia	<2
Abril 2003	AD	19	31	Ausencia	180
	AD uv	3	4	Ausencia	95
	AR	ND	ND	Ausencia	10,6
Mayo 2003	AD	72	296	Ausencia	214
	AD uv	176	372	Ausencia	221
	AR	ND	ND	Ausencia	11,2
Agosto	AD	$2,8 \times 10^3$	$1,4 \times 10^3$	Ausencia	989
2003****	AD uv	60	60	Ausencia	317
	AR	$9,3 \times 10^2$	ND	Ausencia	15,6
Sept. 2003	AD	68	81	Ausencia	41,0
•	AD uv	20	8	Ausencia	35,1
	AR	110	ND	Ausencia	29,3
Octubre 2003	AD	110	220	Ausencia	52,7
	AD uv	140	170	Ausencia	35,1
	AR	20	Nd	Ausencia	29,8

Aspectos sanitarios

Indirecto: Consumo alimentos regados: Infectividad, dosis mínima

DIRECTO:

La **ingesta** de agua contaminada, (no usual cuando se trata de aguas depuradas).

- Por el contacto cutáneo o mucoso:
 - **riesgo profesional (MANEJO SEGURO!)** para los manipuladores de las redes de abastecimientos y los agricultores, o
 - riesgo en el caso de reutilización de aguas **con fines recreativos**.
- → Aunque normalmente se trata de infecciones superficiales, en individuos **inmunodeprimidos** puede suponer infecciones serias.

Los mecanismos de transmisión de las enfermedades

gastrointestinales pueden ser :

INDIRECTO

Consumo de **alimentos** que incorporan de alguna forma el agua contaminada: infectividad, dosis mínima

• productos agrícolas regados con aguas depuradas de calidad sanitaria deficiente

• El **manejo es crítico**: El sistema de riego empleado, las dosis, los productos

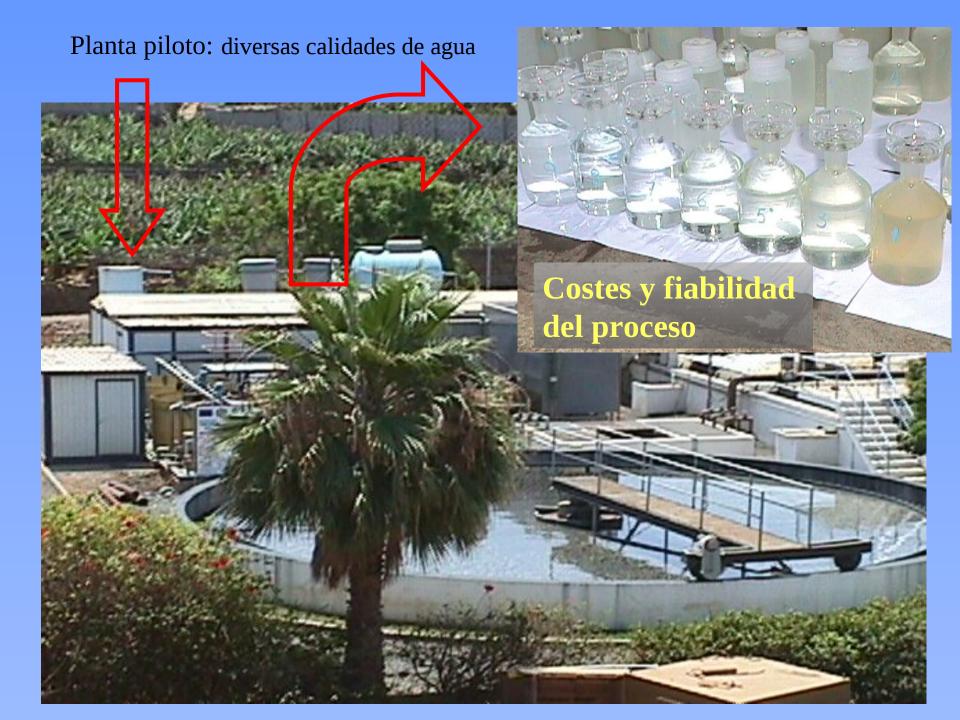
Los mecanismos de transmisión INDIRECTOS

Estudio del comportamiento **indicadores de contaminación**

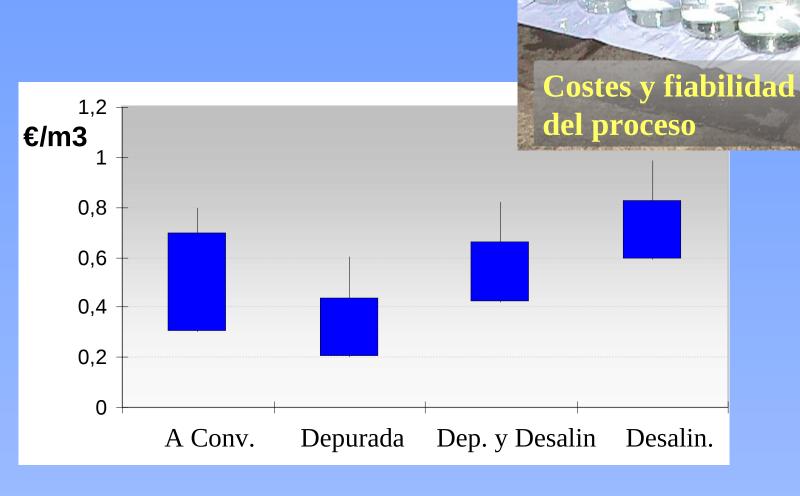
Dentro de los **enterococos fecales** solo deben incluirse aquellos que se encuentran **exclusivamente** en las heces del hombre y de los animales

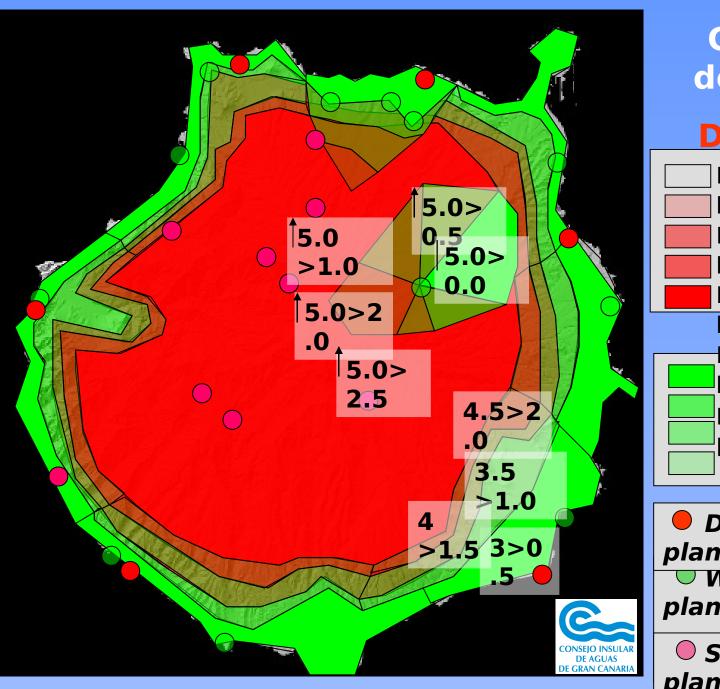
En los análisis de **aguas, el 91,5%** de los enterococos fecales aislados correspondían a especies de origen intestinal

De las cepas encontradas **en planta**: el 32% dicho origen (*E. faecalis y E. hirae*) mientras que el **68%** provendrían de **otras** fuentes


Es probable, (riego SDI) que el origen de las cepas de enterococos sea ambiental en muchos casos, y que los aislados fecales se deban a heces de animales de vida libre y no procedan del agua utilizada para regar

MARZO 2003	Alfalfa AR	Alfalfa AD	Alfalfa AD	Pasto Sudán	
	Sobre gotero	Sobre gotero	a 1 m. gotero	Sobre gotero	
Coliformes					
fecales	<3	75	<3	(1100)	
E. coli	<3	9	<3	1100	
Estreptococos	240	15	23	9	
fecales					
Salmonella	Ausencia	Ausencia	Ausencia	Ausencia	


MAYO 2003	Alfalfa AR	Alfalfa AD	Alfalfa AD	Pasto Sudán
	Sobre gotero	Sobre gotero	a 1 m. gotero	Sobre gotero
Coliformes				
fecales	9	<3	>2400	<3
E. coli	9	<3	>2400	<3
Estreptococos	93	4	23	75
fecales				
Salmonella	Ausencia	Ausencia	Ausencia	Ausencia


Julio 2003	Alfalfa AR	Alfalfa AD	Alfalfa AD	Pasto Sudán	
	Sobre gotero	Sobre gotero	a 1 m. gotero	Sobre gotero	
Coliformes					
fecales	<3	43	150	>2400	
E. coli	<3	43	150	>2400	
Estreptococos	<3	<3	23	>2400	
fecales					
Salmonella	Ausencia	Ausencia	Ausencia	Ausencia	

Septiembre	Alfalfa AR	Alfalfa AD	Alfalfa AD	Pasto Sudán	
2003	Sobre gotero	Sobre gotero	a 1 m. gotero	Sobre gotero	
Coliformes					
fecales	210	150	9	>2400	
E. coli	<3	20	<3	<3	
Estreptococos	>2400	>2400	>2400	>2400	
fecales					
Salmonella	Ausencia	Ausencia	Ausencia	Ausencia	

Diversas calidades de agua

Consumo deEnergia

DW vs RW

- Height 100: 3.0
- kw/m³
- Height 200: 3.5
- kw/m³
- Height 300: 4.0

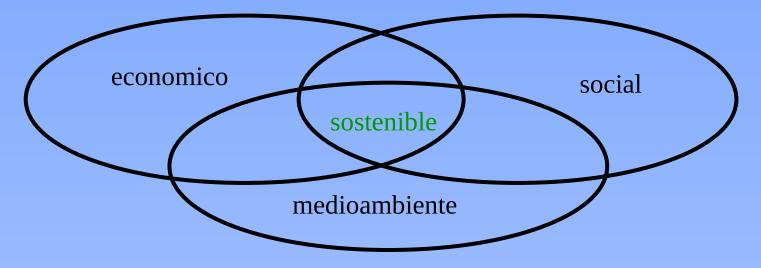
kw/m³

- Height 400: 4.5
- Height 100: 0.5
- ተሥ⁄ያበት 500: 5.0 ዜው ያሉ 200: 1.0
- kw/m³

Height 300: 1 5

- Desalination plant
- Waste Water plants
- Small Water plants

"La sostenibilidad de los sistemas productivos aparece como la única alternativa racional de gestión del medio rural"


Diferentes ventajas:

- -para el agricultor (barato, fiable y disponible) que
- para la sociedad (disminución consumo recursos convencionales y energía)

Concepto de **sostenibilidad**:

Equilibrio entre:

- •los aspectos sociales
- •los aspectos mediambientales
- ·los aspectos económicos

Potential irrigation problem		Units	Degree of restriction on use					
			None	Slight to moderate	Severe			
S	Salinity							
Ē	C _W ¹	dS/m	< 0.7	0.7 - 3.0	> 3.0			
OI								
T	DS	mg/l	< 450	450 - 2000	> 2000			
ĺn	filtration							
S	$AR^2 = 0 - 3$ and EC_w		> 0.7	0.7 - 0.2	< 0.2			
	3 -6		> 1.2	1.2 - 0.3	< 0.3			
	6-12		> 1.9	1.9 - 0.5	< 0.5			
	12-20		> 2.9	2.9 - 1.3	< 1.3			
	20-40		> 5.0	5.0 - 2.9	< 2.9			
S	pecific ion toxicity							
S	odium (Na)							
	Surface irrigation	SAR	< 3	3 - 9	> 9			
	Sprinkler irrigation	me/I	< 3	> 3				
Chloride (Cl)								
	Surface irrigation	me/I	< 4	4 - 10	> 10			
	Sprinkler irrigation	m³/l	< 3	> 3				
В	oron (B)	mg/l	< 0.7	0.7 - 3.0	> 3.0			
	Trace Elements (see Table 10)							
M	Miscellaneous effects							
Nitrogen (NO ₃ -N) ³		mg/l	< 5	5 - 30	> 30			
Bicarbonate (HCO ₃)		me/I	< 1.5	1.5 - 8.5	> 8.5			
ρl	Н		N	ormal range 6.5-8				

ESTABLECIMIENTO DE NORMATIVAS: ESTUDIO COMPARATIVO EN DIVERSOS PAISES

Fuente: Ayers & Wescot, 1985 FAO

Depende:
Clima
Suelo
Especie cultivada
Prácticas de
manejo del agua

2. EVALUACIÓN DE LA CALIDAD AGRONÓMICA DEL AGUA DEPURADA

2. Características físico-químicas del suelo

la relación agua-suelo-planta

El SAR evalua el riesgo pero:

la presencia de sales en la solución del suelo (cuantificada mediante el parámetro Conductividad Eléctrica, EC) disminuye el riesgo de

impermeabilización de l

Los criterios agronómicos de evaluación de aguas incluyen la combinación de los dos parámetros citados: SAR y EC

Efectos en suelo: estabilidad estructural

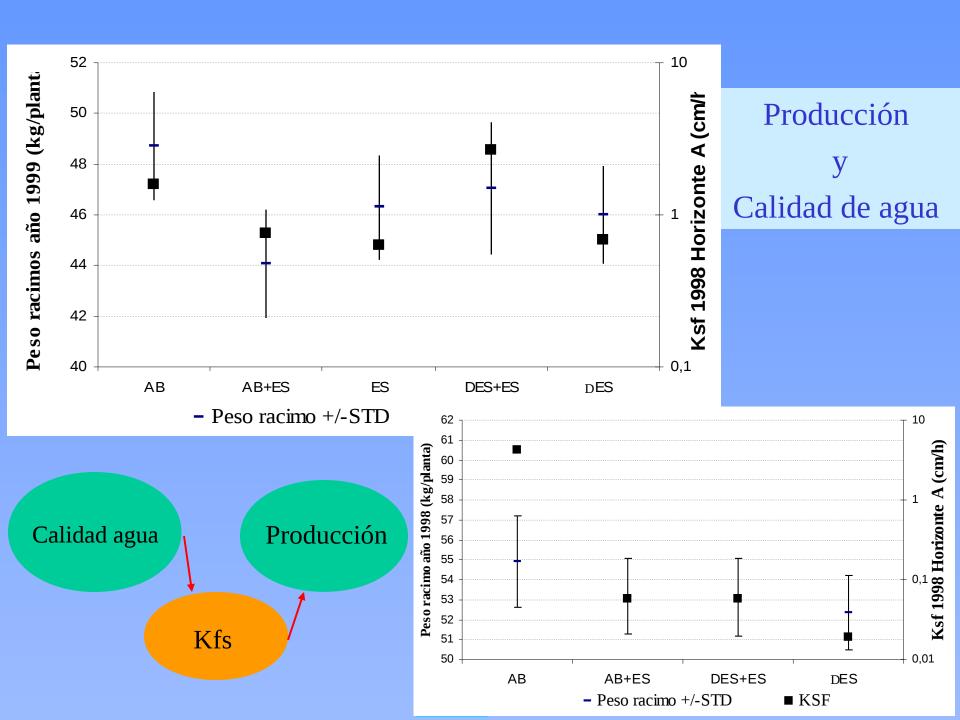
La calidad de agua que **debe ser producida por las desaladoras de AD** debe establecerse tras realizar los correspondientes estudios en campo:

→la combinación de agua con: baja salinidad y alto SAR supone un riesgo de desestabilización de la estructura de los suelos que puede afectar a la producción

salinidad

La calidad de agua que debe ser producida por las desaladoras de AD debe establecerse tras realizar los correspondientes estudios en campo:

- →la combinación de agua con: baja salinidad y alto SAR supone un riesgo de desestabilización de la estructura de los suelos
- •Este **riesgo** es **variable** según las condiciones previas de **estabilidad** del suelo y la sensibilidad no es la misma para todas las especies cultivadas.
- •Además, el manejo del agua modifica este riesgo



La calidad de agua que debe ser producida por las desaladoras de AD debe establecerse tras realizar los correspondientes estudios en campo:

- →la combinación de agua con: baja salinidad y alto SAR supone un riesgo de desestabilización de la estructura de los suelos
- •Este riesgo es variable según las condiciones previas de estabilidad del suelo
- •A su vez, la respuesta de las especies cultivadas a los problemas estructurales es muy variable: fenómeno muy complejo

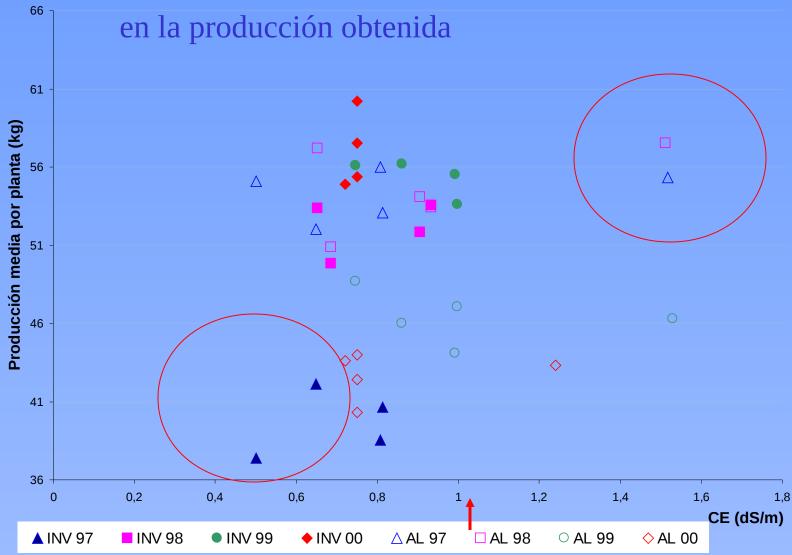
La **platanera** es una especie que resulta ejemplar en cuanto a su **sensibilidad a salinidad y a asfixia radicular**

Efectos en suelo: salinidad

•La **salinidad** del AD se debe en parte a los nutrientes aportados,

en las aguas salinas de origen marino la salinidad es casi exclusivamente debida a las elevadas concentraciones de cloruros y sodio

Efectos en suelo: salinidad

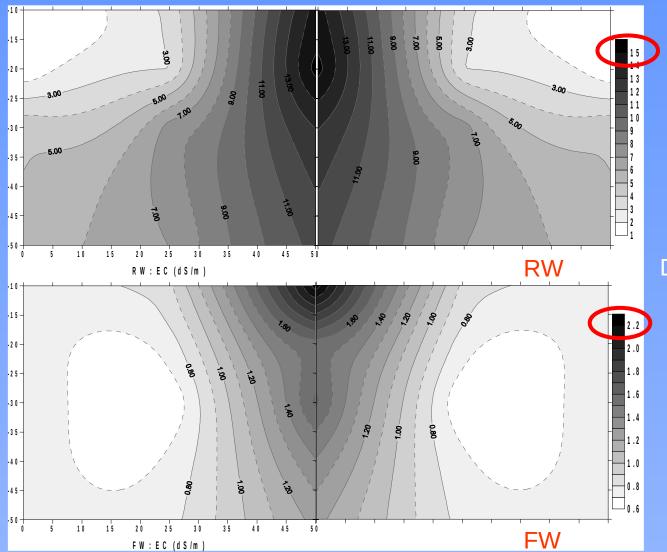

•La salinidad del AD se debe en parte a los nutrientes aportados,

en las aguas salinas de origen marino la salinidad es casi exclusivamente debida a las elevadas concentraciones de cloruros y sodio

→Como los **umbrales de salinidad** establecidos han sido calculados para **CE de recursos convencionales**, para determinar el **umbral de salinidad para el AD** es necesario realizar nuevos estudios

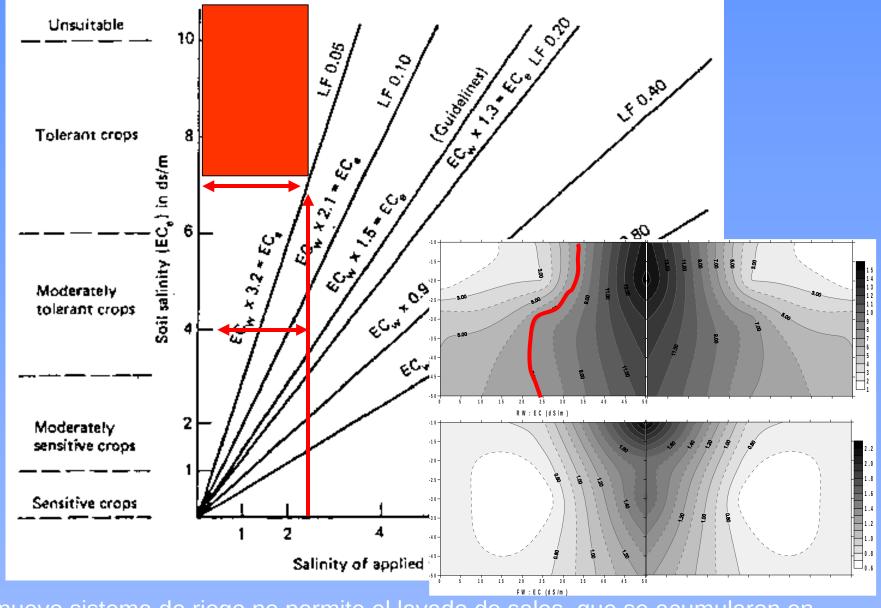
RESULTADOS

Producción: no se observa una respuesta a la salinidad del agua

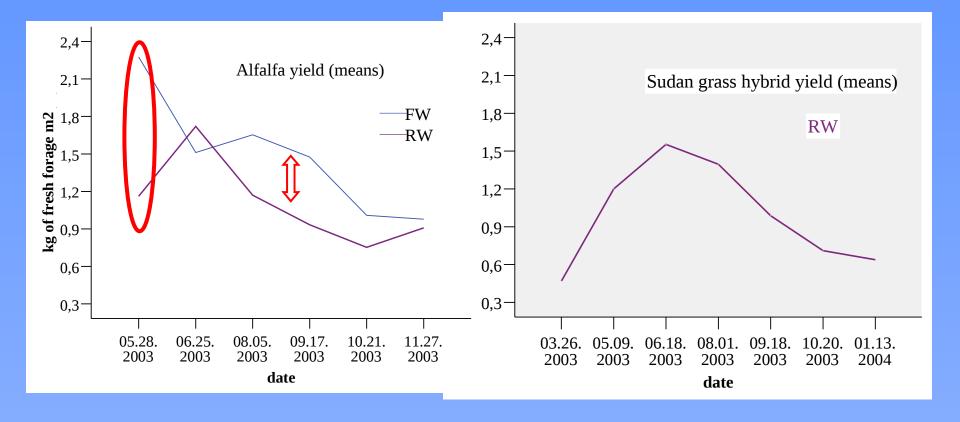

Experiencia en Forrajeras: composicion del agua RW y FW

Irrigation	EC	pН	Na ⁺	$K^{^{+}}$	Ca ²⁺	Mg^{2+}
Water	dS m ⁻¹		$\operatorname{mmolc} \cdot \operatorname{L}^{-1}$			
FW	0.15 (0.14)	7.15 (1.01)	0.56 (0.91)	0.20 (0.08)	0.60 (0.12)	0.20 (0.19)
RW	2.24 (0.75)	7.76 (0.56)	14.55 (5.97)	1.40 (0.46)	3.86 (1.24)	4.93 (2.15)
	TSS	SAR	Cl ⁻	SO_4	Alk	NO ₃
	${\sf mg}{\cdot}{ m L}^{ ext{-}1}$	$(\text{mmol}\cdot\text{L}^{-1})^{1/2}$		$\operatorname{mmolc} \cdot \operatorname{L}^{\text{-1}}$		
FW	3.03 (3.40)	0.88	0.59(1.12)	0.09(0.12)	1.11(0.98)	0.01(0.01)
RW	17.87 (3.76)	6.94	12.10(5.45)	3.8(0.76)	9.03(2.24)	0.9(1.3)
	$\mathrm{NH_4}$	Pt	В	Fe	Mn	Zn
mr		mmolc∙L ⁻¹			$\mu ext{mol} \cdot ext{L}^{ ext{-}1}$	
FW	0.01 (0.01)	DL	DL	0.53 (1.08)	0.14 (0.31)	0.32 (0.31)
RW	0.77 (0.81)	0.14 (0.09)	0.19 (0.06)	7.84 (23.08)	0.7 (1.25)	3.35 (3.83)

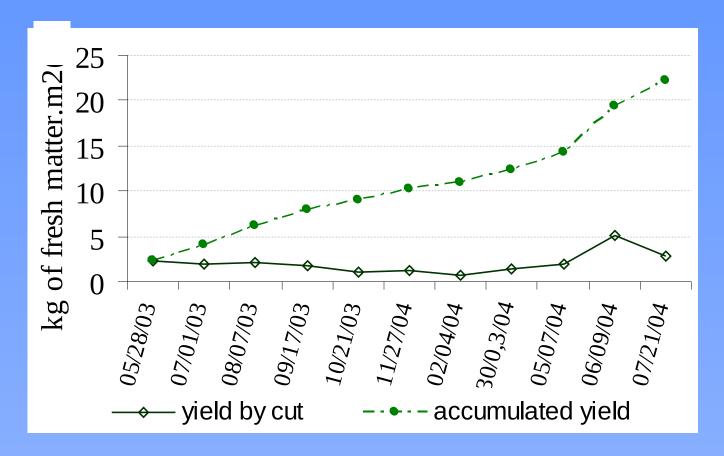
RW mostró: (Ayers & Westcot, 1985)


- restricción moderada para salinidad, boro, nitrato y cloruros
- ninguna restricción relativa a riesgo de destrucción de agregados (infiltración asegurada)

Sin embargo, el riego por salinidad fue mucho mayor con el cambio de sistema de riego


Suelo

Differente escala!!!



El nuevo sistema de riego no permite el lavado de sales, que se acumularon en superficie

A partir de 0.25 m del emisor la salinidad afectó incluso a una especie tolerante como es la alfalfa

Aun usando un agua salina (EC: 2.24 dS/m) y sódica (SAR: 6.94) la producción fue muy elevada

Utilizando 600 L·m-2 y año es posible obtener **9 cortes por año y alcanzar elevados rendimientos** 143 t/ha y año de materia fresca

- Considerando el precio del heno en 0.24 €/kg y el rendimiento mas pequeño obtenido de 8.4 kg de materia fresca ·m-2 (equivalente a 2.1 materia seca.m-2),
 el beneficio es 0.5 €·m-2.
- Asumiendo un precio de RW de 0.2 €·m-3 y regando con 600 l·m-2 mediante un sistema SDI, se puede calcular que el coste del RW representa menos del 24 % del beneficio.
- Por tanto, es posible cultivar muchos suelos abandonados y producir el forraje que necesita nuestra ganadería.

- Por tanto: los efectos del reuso del agua depurada se producen de forma **simultánea** y son afectados por las condiciones agroclimáticas y las técnicas de cultivo de las regiones
- Los estudios deben realizarse contemplando conjuntamente todos los aspectos implicados en la reutilización para realizar **recomendaciones sobre el manejo óptimo de este recurso**
- La propuesta de **normativa** de reutilización debe contemplar **aspectos agrarios** y adaptarse a las condiciones agroecológicas Canarias
- Los **costes** de tratamiento deben ser **repartidos** entre los agentes implicados